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ABSTRACT. This paper presents the modeling of tool life and surface roughness for machining AISI 
52100 steel with a hardness of 50 HRC through Design of Experiments and Response Surface Methodology 
(RSM) with a view to enhance the quality and productivity. Knowing that the tool life and surface 
roughness are factors that influence the quality of the product, this study used the statistical tool of RSM 
in the search of factors that better determine optimal models. The models obtained prioritize the product 
quality and the cutting productivity. Results from Analysis of Variance demonstrated that the 
mathematical models elaborated allowed the prediction of surface roughness parameters’ values and tool 
life (T) with a precision of 95% confidence interval and a coefficient of determination above 94%. The 
wiper geometry of the tool led to the achievement of low average surface roughness (Ra) ranging from 0.2 
to 0.4 μm with relatively high advances (0.2-0.4 mm rev-1) and maximum height of the profile surface 
roughness (Rt) in the range of 1.4 to 2.8 μm, without making use of the cutting fluid. 
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Introduction 

Turning and hard turning technology has become an important manufacturing process and is used in a 
great variety of industrial applications like shafts, cams, bearings, forged parts, molds and dies (Davim, 
2011). In the machining process, in order to make the parts that will provide the correct functioning, it is 
necessary to reach the desired surface quality. According to Shihab, Khan, Mohammad, and Siddiqueed 
(2014a), the hard machining presents challenges to attain high-precision machining and improved tool life 
in terms of selection of tool insert. The process in hard turning differs from conventional turning basically 
because of the characteristics: cutting tool, mechanisms involved during chip formation, and workpiece 
hardness. Grzesik and Zak (2012) and Grzesik and Wanat (2006) also points some advantages of hard 
turning: the cutting of production costs, reduction of each operation’s processing time, and elimination of 
the need for cutting fluid.  

Production cost and the performance of the overall mechanical system is greatly influenced by the 
surface roughness, so this characteristic is very significant as a quality measure. Ferreira, Řehoř, Lauro, 
Carou, and Davim (2016) analyzed the flank wear and its influence on the resulting surface roughness in 
hard turning processes of AISI H13 machined parts with ceramic tools and found that cutting speed exerted 
a significant influence on the flank wear, but there were no clear trends of surface roughness with tool wear, 
either with or without wiper tools. 

According to Zhang, Liu, and Yao (2007), improved surface roughness can be achieved with wiper inserts 
or increased feed rates; so, it is possible to achieve better surface finish or increase the productivity with 
hard part machining. In Suleyman, Yaldiz, and Turkes (2011), the influence of tool geometry on the surface 
finish in hard turning was researched; the Response Surface Methodology (RSM) was applied and a 
prediction model was developed related to the Ra. The results indicated that the significant factor to 
determine Ra and Rt was the tool nose radius.  

There is also an alternative hybrid approach, combining Response Surface Methodology (RSM) and 
Principal Component Analysis to optimize multiple correlated responses during a turning process (Paiva, 
Ferreira, & Balestrassi, 2007). Scandiffio, Diniz, and Souza (2016) investigated the free-form milling of hard 
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materials employing a ball-end cemented carbide cutting tool and concluded that tool life shortens as the 
tool vibration levels grow, hard materials cutting stability is improved when the tool tip’s center is engaged, 
thus leading to better quality surface finishing and longer tool life. In addition, Chinchanikar and 
Choudhury (2015) present a systematic literature review on hard steels machining using coated tools, hard 
turning, cooling methods and modeling of machining processes. 

In this study, RSM was used to find the optimum values of the cutting parameters on the turning of AISI 
52100 steel with Al2O3/TiC tool with wiper geometry through the development of a mathematical model of 
T, Ra and Rt parameters. 

Material and methods 

The development of Design of Experiments (DOE) was done in the 1920’s and later has been enhanced 
and applied by leading researchers all around the world (Taguchi, 1987). 

According to Montgomery (2008), DOE is a methodology used to assess the magnitude and direction of 
many sources of factors that influence a process, be it a manufacturing one, the design of a new product 
and/or of a new service. The practitioner should start with the identification of factors and their 
combinations that may contribute to changes in the model that attempts to describe the behavior of the 
dependent variables or outcomes. Once the experiments are performed, the analysis proceeds to estimate 
the main effects of each factor as well as the two-factor (or more) interactions’ ones using appropriate 
statistical methods, which ultimately leads to the screening of factors.  

During the conduction of experiments, all the factors are, in general, changed simultaneously and the 
several ways to combine them are called arrangements or designs. The most general case is the complete or 
full factorial arrangement; the total number of experiments N is related to the number of factors k by the 
relation N = 2k. According to Montgomery (2008), all possible combinations of levels of the experimental 
factors are used in a full factorial DOE technique, thus covering the entire experimental space. The RSM is a 
specific type of DOE that incorporate optimization techniques. Myers (1999) presented a thorough 
discussion of the RSM and a historical review of the state-of-the-art of RSM, as well as some suggestions for 
future research. 

Pontes et al. (2010), in their concern with surface roughness in hard turning, proved that DOE is an 
efficient predictive statistical tool when designing Artificial Neural Networks of Radial Basis Function 
architectures. Santhanakumar, Adalarasan, Siddharth, and Velayudham (2016) employed a grey-based RSM 
and Taguchi’s L27 orthogonal design on the study of the influence of cutting speed (Vc), feed rate (f) and 
depth of cut (ap) on tool’s flank wear and on roughness in rough machining of high-strength materials; at 
the same time they reduced their multi-response optimization case to a single-response one, they found 
that, even though the surface finish’s quality was improved by the increase of the cutting speed, as feed rate 
and depth of cut increase to elevated values the roughness also increased. 

According to Bouacha, Yallese, Khamel, and Belhadi (2014), the AISI 52100 hardened steel (the same 
material used for the experiments in this paper) is highly recommended for the manufacture of various 
profiling rollers, balls, dies and bearing cages. It is also recommended in cold working, for profiling 
cylinders, forming matrices and for wear coating purposes.  

The dimensions of the steel rod used in this research were: diameter = 49 and length = 50 mm. The 
chemical composition of the AISI 52100 steel (in wt. %) is described in Table 1. 

A CNC machine was used in the turning process, with maximum power of 7.5 HP axis; maximum speed of 
4,000 rpm; maximum torque of 200 kgf m-1 and a turret with eight positions. 

The inserts are of mixed ceramic (Al2O3 + TiC) coated with titanium nitride (TiN), GC 6050 class with 
wiper geometry ISO CNGA S01525WH 120408. The tool holder is ISO DCLNL Model 1616H12; position angle 
of 95°, rake angle of -6° and clearance angle of 7°. 

Table 1. AISI 52100 steel chemical composition. 

Iron (Fe) Carbon (C) Silicon (Si) 
96.83% 1.03% 0.23% 

Manganese (Mn) Chromium (Cr) Molybdenum (Mo) 
0.35% 1.40% 0.04% 

Nitrate (Ni) Sulfur (S) Phosphorous (P) 
0.11% 0.00% 0.01% 
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The tool wear was monitored using an optical microscope with a digital camera at 40x magnification. The 
permissible flank wear was established at VBB = 0.3 mm. Measuring Ra and Rt a tool tip was used. Roughness 
measurements were made using a portable stylus-type profilometer, Surtronic 3+ stylus-type instrument 
manufactured by Taylor Hobson. The roughness measurements were taken at three different points of the piece 
and four values per point were measured, totaling twelve measures for each run accomplished. 

The criterion for tool change, especially roughness values (Ra < 0.5) μm, was flank wear VBB < 0.3 mm. 
This criterion was adopted according to the risk of breakage of the mixed ceramic insert and each piece 
machined was removed so the roughness could be measured. Moreover, the insert was removed from 
toolholder for monitoring the flank wear (VBB). Figure 1a shows the tool wear mixed ceramic and Figure 1b 
the hard turning process of AISI 52100 steel used in the experimental study. 

In the 2k full factorial design, each input factor has two levels; the total of experiments are related to the 
total possible combinations between factors. After the full factorial analysis, the design was augmented 
through the addition of axial points, to form a central composite design (CCD) of the RSM. All the analysis 
was based on Minitab® numerical results. 

In running a two-level factorial, the practitioner may start by fitting the first-order model with 
interactions of Equation 1-2 for exploratory reasons; however, the second-order model of Equation 3 is 
frequently more adequate. There is the possibility of replicating certain points in a 2k factorial that gives 
useful information about the curvature in the experimental region. The method consists of adding center 
points to the 2k design. The important reason for including the center points at the design is that they do 
not affect the effect estimates in a 2k design (Gheshlaghi, Scharer, Moo-Young, & Douglas, 2008). Based on 
that, the turning tests were evaluated in a way to provide accuracy when studying the correlation of cutting 
parameters on machining tool life and workpiece roughness through the application of factorial and 
response surface designs. Table 2 lists the setup of the experiment. 
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The guidelines, hardness of the workpiece material and the chemical composition provided by the 
cutting tool manufacturer inspired the selection of these levels. 

The most used response surface experimental approach is the CCD. As stated, it consists of a factorial 
design with center points, allowing an efficient estimation of first and second-order terms augmented with 
a group of axial points (Montgomery, 2008). Table 3 presents the experimental matrix using the levels 
defined in Table 2 and the measured responses. 

 

Figure 1. Process of hard turning with mixed carbide ceramics. 
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It is of crucial importance to confirm the adequacy of each fitted model; the criteria to select  
the most adequate model are based on the lack-of-fit test and the adjusted coefficient of 
determination, R2adj, which is a modified R2 that is adjusted for the number of terms in the model 
(Ohale, Uzoh, & Onukwuli, 2017). Four types of models have been employed in this study using 
Equation 1-3: (a) linear, (b) linear + interactions, (c) linear + squares and (d) full quadratic models were 
specified. 

When unnecessary terms are included, R2 can be artificially high. Unlike R2, R2adj may get smaller when 
unnecessary terms are added to the model. Table 4 shows the results for the four models that were fitted to 
T, Ra and Rt; see also Figure 2, which illustrates the average response surface for Ra using Equation 1-7; the 
analysis of the response surface for the average roughness as a function of Vc, f and ap presents evidences 
that the factor that most influences the Ra of the machined surface is f. In this way, it is also possible to 
verify visually by analyzing the surfaces that the increase of f impacts on the increase of Ra; the increase of 
Vc impact to increase Ra. 

Residual analysis aims to assess the quality of results, in other words, show whether the results are real 
or whether they are coincidental. In addition, it serves to identify discrepancies or errors, such as inversion 
of values, misspellings, inadequacy of the experiment result, and so on. According to Montgomery (2008), 
when a model is properly formulated, the residual should not be correlated (independent) and should be 
normally distributed. 

Table 2. Cutting Parameters and their levels. 

Symbol Unit 
Factor  
levels 

-1.68 -1 0 +1 1.68 
Vc m min.-1 186 200 220 240 254 
f mm rev-1 0.13 0.20 0.30 0.40 0.46 

ap mm 0.09 0.15 0.22 0.30 0.35 

Table 3. Central composite design. 

Vc  
m min.-1 

f 
mm rev-1 

ap 
mm 

A B C 
T 

min. 
Ra 
μm 

Rt 
μm 

200 0.20 0.15 -1 -1 -1 17.21 0.255 1.416 
240 0.20 0.15 1 -1 -1 11.37 0.276 1.456 
200 0.40 0.15 -1 1 -1 5.96 0.317 2.121 
240 0.40 0.15 1 1 -1 4.48 0.307 2.159 
200 0.20 0.30 -1 -1 1 9.42 0.255 1.456 
240 0.20 0.30 1 -1 1 7.37 0.255 1.580 
200 0.40 0.30 -1 1 1 4.03 0.351 2.019 
240 0.40 0.30 1 1 1 6.10 0.289 1.990 
220 0.30 0.22 0 0 0 4.89 0.269 1.818 
220 0.30 0.22 0 0 0 5.0 0.259 1.718 
220 0.30 0.22 0 0 0 4.77 0.260 1.718 
220 0.30 0.22 0 0 0 5.01 0.260 1.722 
220 0.30 0.22 0 0 0 5.12 0.260 1.718 
186 0.30 0.22 -1.68 0 0 9.51 0.290 1.694 
254 0.30 0.22 1.68 0 0 6.86 0.260 1.818 
220 0.13 0.22 0 -1.68 0 14.18 0.217 1.549 
220 0.46 0.225 0 1.68 0 4.12 0.317 2.549 
220 0.30 0.100 0 0 -1.68 9.42 0.317 1.946 
220 0.30 0.350 0 0 1.68 4.92 0.317 1.746 

Table 4. Selection of the best model in Response Surface Design. 

Model 
T Ra Rt 

R2
adj lack-of-fit test R2

adj lack-of-fit test R2
adj lack-of-fit test 

Linear 62,51% 0.000 53.66% 0.001 83.18% 0.024 
Linear + Interactions 73.15% 0.000 57.18% 0.001 81.78% 0.018 

Linear + Squares 79.79% 0.000 83.17% 0.009 90.65% 0.063 
Full Quadratic 99.74% 0.172 97.69% 0.286 91.26% 0.059 
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Figure 2. Response surfaces for Ra using models (a) linear; (b) linear + interactions; (c) linear + squares and; (d) full quadratic. Ra௟௜௡௘௔௥ = 	0.280568	 − 	0.007383	 ∗ 	Vc	 + 	0.028595 ∗ f − 0.000300 ∗ ap (4)Ra௟௜௡௘௔௥ା௜௡௧௘௥௔௖௧௜௢௡௦= 0.280568 − 0.007383Vc + 0.028595 ∗ f − 0.0003000 ∗ ap − 0.011720 ∗ Vc ∗ f− 0.009314 ∗ Vc ∗ ap + 0.004484 ∗ f ∗ ap (5)Ra୪୧୬ୣୟ୰ାୱ୯୳ୟ୰ୣୱ = 0.261628 − 0.007383 ∗ Vc + 0.028595 ∗ f − 0.0003000 ∗ ap + 0.004750 ∗ Vcଶ+ 0.001991 ∗ fଶ + 0.019608 ∗ apଶ (6)

Results and discussion 

Table 5 lists the measurements considering a full factorial design with eight corners and five center 
points. Analysis of variance (ANOVA) was applied to investigate the main effects, interactions and curvature 
effects of T, Ra and Rt (see Table 6, 7 and 8, respectively). 

The non-significance of the various terms was assessed on the basis of the resultant P-values: (a) in the 
case of T, the three-way interaction Vc * f * ap (p = 0.558), (b) in the case of Ra, both the main effect ap  
(p = 0.710) and (c) the three-way interaction Vc * f * ap (p = 0.057). In the case of Rt, that just the main 
effect f and two-effect f * ap were significant (p = 0.000 and 0.025, respectively). 

Curvature tests indicate that the center points added to the experimental matrix provided statistical 
evidence of curvature for the response surfaces T and Ra. In addition, Figure 3 shows graphically the main 
and curvature effects for each response and Figures 4, 5 and 6 shows the effect of interactions of 
controllable variables on responses. 

It is essential to realize that the factor f has the greater main effect in each response, due to the steeper 
slope than the other factors. In Figure 3a, the difference (ycorner - ycenter) is small, that is the reason why 
the center points are lying near the plane passing through the factorial points. The almost horizontal 
behaviors for factors ap in Figure 3b as well as Vc and ap in Figure 3c show that there is no significant 
impact on the responses when the levels are changed from the low to the high.  

According to the results in Table 4, the full quadratic model is the most appropriate approach to fit the 
response surfaces for T, Ra and Rt: R2adj = 99.74, 97.69 and 91.26%, respectively. Table 9, 10 and 11 present 
the ANOVA results for each response. Despite the fact that some terms are not significant, mainly for Rt, if 
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any one of them is removed, either R2adj or the lack-of-fit test indicates a worsening of the model. As 
stated, removing these terms of Rt, the new R2adj = 82.00% and the lack-of-fit = 0.021. The lack-of-fit P-
value indicates that there is 17.2% chance that a ‘lack of fit F-value’ of 2.78 could occur due to noise, as 
show in Table 9 (Shihab, Khan, Mohammad, & Siddiqueed, 2014b). 

Taking into account Table 4 and the abovementioned analysis, response surfaces and contour plots were 
generated for T, Ra and Rt, using the full quadratic model in Equation 7-9 (see Figure 7); only the most 
significant variables were generated in the graphs. Ra௙௨௟௟	௤௨௔ௗ௥௔௧௜௖ = 0.261628 − 0.007383 ∗ Vc + 0.028595 ∗ f − 0.0003000 ∗ ap + 0.004750 ∗	Vcଶ + 0.001991 ∗	f ଶ + 0.019608 ∗	apଶ 	− 	0.011720	 ∗ 	Vc	 ∗ 	f	– 0.009314 ∗ Vc ∗ ap + 0.004484 ∗ f ∗ 	ap  

(7)T௙௨௟௟	௤௨௔ௗ௥௔௧௜௖ = 4.9627 − 0.8609 ∗ Vc − 3.0548 ∗ f − 1.4402 ∗ ap + 1.1152 ∗ Vcଶ + 1.4564 ∗	 f ଶ + 0.7564 ∗ apଶ+ 1.0600 ∗ Vc ∗ f + 0.9175 ∗ Vc ∗ ap + 1.4350 ∗ f ∗ ap (8)Rt୤୳୪୪	୯୳ୟୢ୰ୟ୲୧ୡ = 1.74353 + 0.02789 ∗ Vc + 0.29750 ∗ f − 0.03252 ∗ ap − 0.01917 ∗ Vcଶ + 0.08449 ∗	 f ଶ+ 0.01270 ∗ apଶ − 0.01940 ∗ Vc ∗ f + 0.00218 ∗ Vc ∗ ap − 0.05446 ∗ f ∗ ap (9)

Table 5. Full factorial design with five center points. 

Vc  f ap A B C T Ra Rt 
200 0.20 0.15 -1 -1 -1 17.21 0.255 1.416
240 0.20 0.15 1 -1 -1 11.37 0.276 1.456
200 0.40 0.15 -1 1 -1 5.96 0.317 2.121
240 0.40 0.15 1 1 -1 4.48 0.307 2.159
200 0.20 0.30 -1 -1 1 9.42 0.255 1.456
240 0.20 0.30 1 -1 1 7.37 0.255 1.580
200 0.40 0.30 -1 1 1 4.03 0.351 2.019
240 0.40 0.30 1 1 1 6.10 0.289 1.990
220 0.30 0.22 0 0 0 4.89 0.269 1.818
220 0.30 0.22 0 0 0 5.0 0.259 1.718
220 0.30 0.22 0 0 0 4.77 0.260 1.718
220 0.30 0.22 0 0 0 5.01 0.260 1.722
220 0.30 0.22 0 0 0 5.12 0.260 1.718

Table 6. ANOVA results for T. 

Source DF Seq SS Adj SS Adj MS F P 
Main Effects 3 101.843 101.842 33.947 1921.19 0.000

Vc 1 6.661 6.661 6.661 376.98 0.000
f 1 76.880 76.880 76.880 4350.88 0.000

ap 1 18.301 18.301 18.301 1035.72 0.000
2-Way Int. 3 32.197 32.197 10.732 607.38 0.000

Vc*f 1 8.989 8.989 8.988 508.70 0.000
Vc*ap 1 6.734 6.734 6.734 381.12 0.000
f*ap 1 16.474 16.474 16.473 932.30 0.000

3-Way Int. 1 0.007 0.007 0.007 0.41 0.558
Vc*f*ap 1 0.007 0.007 0.007 0.41 0.558

Curvature 1 33.194 33.194 33.193 1878.53 0.000
Residual Error 4 0.071 0.071 0.017   

Pure Error 4 0.071 0.071 0.017   
Total 12 167.311   

Table 7. ANOVA results for Ra. 

Source DF Seq SS Adj SS Adj MS F P 
Main Effects 3 0.006 0.006 0.002 127.77 0.000

Vc 1 0.000 0.000 0.000 18.75 0.012
f 1 0.006 0.006 0.006 364.40 0.000

ap 1 0.000 0.000 0.000 0.16 0.710
2-Way Int. 3 0.001 0.002 0.000 38.41 0.002

Vc*f 1 0.001 0.001 0.001 64.81 0.001
Vc*ap 1 0.001 0.001 0.001 40.93 0.003
f*ap 1 0.000 0.00 0.000 9.49 0.037

3-Way Int. 1 0.000 0.000 0.000 7.01 0.057
Vc*f*ap 1 0.000 0.000 0.000 7.01 0.057

Curvature 1 0.002 0.002 0.002 127.91 0.000
Residual Error 4 0.000 0.000 0.000   

Pure Error 4 0.000 0.000 0.000   
Total 12 0.011   
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Table 8. ANOVA results for Rt. 

Source DF Seq SS Adj SS Adj MS F P 
Main Effects 3 0.714 0.714 0.238 122.68 0.000 

Vc 1 0.004 0.004 0.004 1.90 0.240 
f 1 0.709 0.709 0.709 365.37 0.000 

ap 1 0.001 0.0014 0.001 0.76 0.433 
2-Way Int. 3 0.027 0.027 0.009 4.60 0.087 

Vc*f 1 0.003 0.003 0.003 1.55 0.281 
Vc*ap 1 0.000 0.000 0.000 0.02 0.895 
f*ap 1 0.024 0.024 0.024 12.23 0.025 

3-Way Int. 1 0.003 0.003 0.003 1.47 0.292 
Vc*f*ap 1 0.003 0.003 0.003 1.47 0.292 

Curvature 1 0.004 0.004 0.004 2.01 0.230 
Residual Error 4 0.008 0.008 0.002   

Pure Error 4 0.008 0.008 0.002   
Total 12 0.755     

 

 

 

 
Figure 3. Main effect plots for a) Tool life, T; b) Roughness, Ra and; c) Roughness, Rt. 

 

Figure 4. Interaction Plot for T. 
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Figure 5. Interaction Plot for Ra. 

 

Figure 6. Interaction Plot for Rt. 

Table 9. ANOVA results for T. 

Source DF Seq SS Adj SS Adj MS F P 
Regression 9 240.959 240.959 26.773 761.75 0.000 

Linear 3 165.889 165.889 55.296 1573.29 0.000 
Vc 1 10.121 10.121 10.121 287.96 0.000 
f 1 127.442 127.442 127.442 3626.00 0.000 

ap 1 28.325 28.325 28.325 805.91 0.000 
Square 3 42.873 42.873 14.291 406.61 0.000 

Vc2 1 9.815 16.977 16.997 483.02 0.000 
f2 1 25.249 28.953 28.953 823.77 0.000 

ap2 1 7.809 7.809 7.809 222.18 0.000 
Interaction 3 32.197 32.197 10.732 305.36 0.000 

Vc*f 1 8.989 8.989 8.989 255.75 0.000 
Vc*ap 1 6.734 6.734 6.734 191.61 0.000 
f*ap 1 16.474 16.474 16.474 468.71 0.000 

Residual 9 0.316 0.316 0.035   
Lack-of-Fit 5 0.246 0.246 0.049 2.78 0.172 
Pure Error 4 0.071 0.071 0.018   

Total 18 241.275     
 

The hessian matrix was constructed from the quadratic models of the responses. Using the Minitab® 
software, the eigenvalues were calculated and analyzed. According to the eigenvalues, the T function is convex; 
Ra and Rt are saddle. So, with the eigenvalues and calculated stationary points from Table 12, it is possible to 
verify that the stationary point from T is a minimal point and Ra and Rt are border points. 
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Table 10. ANOVA results for Ra. 

Source DF Seq SS Adj SS Adj MS F P 
Regression 9 0.019 0.019 0.002 85.54 0.000 

Linear 3 0.012 0.012 0.004 159.37 0.000 
Vc 1 0.001 0.001 0.001 29.87 0.000 
f 1 0.011 0.011 0.011 448.17 0.000 

ap 1 0.000 0.000 0.000 0.05 0.829 
Square 3 0.005 0.005 0.002 71.10 0.000 

Vc2 1 0.000 0.000 0.000 12.36 0.007 
f2 1 0.000 0.000 0.000 2.17 0.175 

ap2 1 0.005 0.005 0.005 210.63 0.000 
Interaction 3 0.002 0.002 0.001 26.14 0.000 

Vc*f 1 0.001 0.001 0.001 44.10 0.000 
Vc*ap 1 0.001 0.001 0.001 27.85 0.001 
f*ap 1 0.000 0.000 0.000 6.46 0.032 

Residual 9 0.000 0.000 0.000   
Lack-of-Fit 5 0.000 0.000 0.000 1.85 0.286 

Pure 4 0.000 0.000 0.000   
Total 18 0.019     

Table 11. ANOVA results for Rt. 

Source DF Seq SS Adj SS Adj MS F P 
Regression 9 1.372 1.372 0.152 21.90 0.000 

Linear 3 1.234 1.234 0.411 59.06 0.000 
Vc 1 0.011 0.011 0.011 1.53 0.248 
f 1 1.209 1.209 1.209 173.6 0.000 

ap 1 0.014 0.014 0.014 2.07 0.184 
Square 3 0.112 0.112 0.037 5.34 0.022 

Vc2 1 0.014 0.005 0.005 0.72 0.418 
f2 1 0.095 0.097 0.097 13.99 0.005 

ap2 1 0.002 0.002 0.002 0.32 0.588 
Interaction 3 0.027 0.027 0.009 1.28 0.338 

Vc*f 1 0.003 0.003 0.003 0.43 0.527 
Vc*ap 1 0.000 0.000 0.000 0.01 0.943 
f*ap 1 0.024 0.024 0.024 3.41 0.098 

Residual 9 0.063 0.063 0.007   
Lack-of-Fit 5 0.055 0.055 0.011 5.66 0.059 

Pure 4 0.008 0.008 0.002   
Total 18 1.435     

Table 12. Stationary points. 

T Ra Rt 
-0.066336 1.581860 1.112008 
0.552279 0.732168 -1.867590 
-0.007640 0.295808 -3.459571 

 

In this study, it was found that the residuals of the models obtained for the surface roughness and tool 
life have normal distributions. According to the recommendations (Taguchi, 1986), Myers (1999) conducted 
a residual analysis of the responses. Residuals are the differences between two or more observations and 
their average. 

The normal probability plot was drawn for residuals as shown in Figure 8a, b and c. It was observed that 
the points are distributed over the line and P-value of normality test was more than 5%, but the residuals 
are normally distributed; and the residues shown to be independently and random. Thus, it can be seen that 
the models were satisfactory. In the P-value hypothesis test, the null hypothesis could not be rejected, so 
proposed models are adequate. 

In order to perform a multiobjective analysis on the controllable variables (Vc, f and ap), the Desirability 
method was used; with the main objective of maximizing T and minimizing Ra and Rt. The desirability is a 
multiobjective method capable of evaluating a set of responses simultaneously, and allowing the determination 
of the most desirable set of conditions for the studied properties (Derringer & Suich, 1980). The optimal points 
achieved by desirability method for each variable are shown in Figure 9. 
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With the achieved results, it is possible to verify the robustness of the method to define optimal points for the 
tool life, minimizing the roughness. The use of desirability is very useful in the optimization processes, as well as 
in the practical application of this work focusing on the production in industry. 

 
Figure 7. Response surfaces and contour plots for a) T; b) Ra and; c) Rt. 

 
Figure 8. Residual analysis for (a) T; (b) Ra and; (c) Rt. 
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Figure 9. Desirability optimal results for responses. 

Conclusion 

The complete models obtained by RSM provided excellent (97.69%) explanation for the adjusted 
parameters of the responses, which demonstrates that the breakthrough factors, ap and Vc, as well as their 
interactions, have a considerable influence on surface roughness Ra and Rt and T parameters. As they exert 
significant influence on T, an increase in any of them contributes to the reduction of the cutting tool’s life. 

Thus, the methodology presented herein proved to be adequate for a turning process optimization. Also, 
this approach can be applied in experiments with cutting parameters as well. 
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